Μίλντρεντ Ντρέσελχαους: Η Βασίλισσα της Επιστήμης του Άνθρακα
Η Μίλντρεντ Ντρέσελχαους (Mildred Dresselhaus), γνωστή και ως η «Βασίλισσα της Επιστήμης του Άνθρακα», υπήρξε μία από τις πιο επιδραστικές φυσικούς του 20ού και 21ου αιώνα. Η συνεισφορά της στην κατανόηση των ιδιοτήτων του άνθρακα και των νανοδομών έχουν αφήσει ανεξίτηλο αποτύπωμα στον κόσμο της επιστήμης και της τεχνολογίας.
Πρώτα Χρόνια και Εκπαίδευση
Η Μίλντρεντ Σπίβεκ γεννήθηκε στις 11 Νοεμβρίου 1930 στο Μπρούκλιν της Νέας Υόρκης. Μεγαλώνοντας σε μία οικογένεια μεταναστών, οι οποίοι ήρθαν στην Αμερική από την Πολωνία, η Μίλντρεντ ανακάλυψε το ενδιαφέρον της για τις επιστήμες σε νεαρή ηλικία. Σπούδασε στο Πανεπιστήμιο του Χάντερ, όπου έλαβε το πτυχίο της στη Φυσική το 1951. Στη συνέχεια, συνέχισε τις σπουδές της στο Πανεπιστήμιο του Σικάγο, όπου απέκτησε το διδακτορικό της το 1958 υπό την καθοδήγηση του διάσημου φυσικού Ενρίκο Φέρμι.
Επαγγελματική Καριέρα
Μετά την ολοκλήρωση του διδακτορικού της, η Ντρέσελχαους άρχισε την ακαδημαϊκή της καριέρα ως ερευνήτρια στο Lincoln Laboratory του MIT. Το 1967 έγινε μέλος του Διδακτικού Προσωπικού του MIT και αργότερα κατέλαβε τη θέση καθηγήτριας στην Ηλεκτρολογική Μηχανική και τη Φυσική. Η Ντρέσελχαους ήταν η πρώτη γυναίκα που κατέλαβε μόνιμη έδρα στο τμήμα Ηλεκτρολογικής Μηχανικής και Φυσικής του MIT, γεγονός που ανοίγει τον δρόμο για πολλές γυναίκες στην επιστήμη.
Επιστημονική Συνεισφορά
Η Μίλντρεντ Ντρέσελχαους είναι κυρίως γνωστή για τις έρευνές της στον τομέα των ιδιοτήτων του άνθρακα. Οι εργασίες της στις νανοδομές άνθρακα, όπως οι νανοσωλήνες άνθρακα και τα γραφένια, ήταν πρωτοποριακές. Ερεύνησε επίσης τα θερμοηλεκτρικά υλικά και τους τρόπους βελτίωσης της απόδοσής τους.
Οι έρευνές της στις ιδιότητες των νανοσωλήνων άνθρακα άνοιξαν νέους δρόμους για την ανάπτυξη υλικών με εξαιρετική μηχανική αντοχή και ηλεκτρική αγωγιμότητα. Τα γραφένια, τα οποία έχουν πάχος ενός ατόμου, έχουν βρει εφαρμογές σε πολλές τεχνολογίες, από τα ηλεκτρονικά μέχρι τα υλικά αεροσκαφών, λόγω των μοναδικών τους ιδιοτήτων.
Βραβεύσεις και Διακρίσεις
Η Ντρέσελχαους τιμήθηκε με πολυάριθμα βραβεία και διακρίσεις για το έργο της. Ανάμεσά τους ξεχωρίζουν το Εθνικό Μετάλλιο της Επιστήμης των ΗΠΑ, το Βραβείο Kavli στην Νανοτεχνολογία, και το Βραβείο του Προέδρου του ΜΙΤ. Υπήρξε μέλος της Εθνικής Ακαδημίας Επιστημών των ΗΠΑ, καθώς και άλλων σημαντικών ακαδημαϊκών ιδρυμάτων.
Προσωπική Ζωή και Κληρονομιά
Η Μίλντρεντ Ντρέσελχαους ήταν παντρεμένη με τον επίσης φυσικό Γιουτζίν Ντρέσελχαους, με τον οποίο απέκτησε τέσσερα παιδιά. Εκτός από την εξαιρετική επιστημονική της καριέρα, υπήρξε υποστηρίκτρια της συμμετοχής των γυναικών στις θετικές επιστήμες, προσφέροντας συμβουλές και καθοδήγηση σε πολλές νέες επιστήμονες.
Η Ντρέσελχαους πέθανε στις 20 Φεβρουαρίου 2017, αφήνοντας πίσω της μια κληρονομιά που συνεχίζει να εμπνέει και να επηρεάζει τον κόσμο της επιστήμης. Η δουλειά της στις νανοδομές άνθρακα και τα θερμοηλεκτρικά υλικά συνεχίζει να αποτελεί βάση για έρευνα και καινοτομία, και η επιρροή της παραμένει ζωντανή μέσω των έργων των επιστημόνων που την ακολούθησαν.
Η ζωή και το έργο της Μίλντρεντ Ντρέσελχαους αποτελούν παράδειγμα για το πώς η αφοσίωση, η επιμονή και η καινοτομία μπορούν να οδηγήσουν σε μεγάλες επιστημονικές ανακαλύψεις και να εμπνεύσουν τις επόμενες γενιές. Ως μια από τις κορυφαίες φυσικούς του κόσμου, η κληρονομιά της Ντρέσελχαους θα συνεχίσει να φωτίζει το δρόμο προς το μέλλον της επιστήμης και της τεχνολογίας.
Το λέιζερ βοηθά στη μετατροπή ενός ηλεκτρονίου σε πηνίο μάζας και φορτίου
Ένα ηλεκτρόνιο έχει μετατραπεί σε ένα σπειροειδές κύμα μάζας και φορτίου, με τη βοήθεια ενός λέιζερ.
«Η χοϊκότητα, ή αλλιώς ο χειρισμός, είναι ένα ενδιαφέρον και εν μέρει ακόμη αινιγματικό χαρακτηριστικό του σύμπαντός μας», λέει ο Πέτερ Μπάουμ από το Πανεπιστήμιο της Κωνστάνζ στη Γερμανία. Τα χειρόμορφα αντικείμενα, όπως οι σπείρες ή τα μπλοκ σε σχήμα L, έχουν αριστερόστροφη ή δεξιόστροφη μορφή- τα μη χειρόμορφα, όπως οι κύκλοι ή οι ευθείες γραμμές, δεν έχουν. Πολλά μόρια και υλικά είναι εκ φύσεως χειρόμορφα και το αν είναι δεξιόχειρα ή αριστερόχειρα αλλάζει τον τρόπο λειτουργίας τους. Όμως ο Μπάουμ και οι συνεργάτες του επινόησαν έναν τρόπο να προσθέσουν χειρικότητα σε κάτι πολύ μικρό και στοιχειώδες – ένα μόνο ηλεκτρόνιο.
Τα ηλεκτρόνια είναι κβαντικά αντικείμενα, οπότε παρουσιάζουν τόσο σωματιδιακή όσο και κυματική συμπεριφορά, ανάλογα με το πείραμα. Σε αυτό, οι ερευνητές εκμεταλλεύτηκαν την κυματιστότητα του ηλεκτρονίου. Πρώτα δημιούργησαν έναν εξαιρετικά γρήγορο παλμό ηλεκτρονίων και στη συνέχεια τον πέρασαν μέσα από λεπτές κεραμικές μεμβράνες, όπου τα σωματίδια συνάντησαν μια ειδική δέσμη λέιζερ. Η δέσμη είχε σχήμα σαν στροβιλώδης δίνη φωτός και, ως αποτέλεσμα, μετέφερε ένα ηλεκτρομαγνητικό πεδίο με παρόμοιο σχήμα. Το πεδίο αυτό επηρέαζε την κυματοσυνάρτηση, ή αλλιώς τις κυματικές ιδιότητες, κάθε ηλεκτρονίου που περνούσε μέσα από αυτό.
Τέλος, οι ερευνητές εντόπισαν αυτά τα πειραγμένα ηλεκτρόνια και υπολόγισαν τις «αναμενόμενες τιμές» για τη μάζα και το φορτίο του καθενός – πού στο διάστημα θα ήταν πιο πιθανό να μετρηθούν μη μηδενικές ποσότητες και των δύο χαρακτηριστικών. Αυτές οι περιοχές του χώρου σχημάτισαν σχήματα: τρισδιάστατες σπείρες που ήταν σαφώς αριστερόχειρες ή δεξιόχειρες.
Ο Μπεν ΜακΜόραν στο Πανεπιστήμιο του Όρεγκον, ο οποίος έχει εργαστεί σε προηγούμενα πειράματα με την κατασκευή χειρόμορφων ηλεκτρονικών σπειρών, λέει ότι η νέα εργασία είναι «μια πολύ εξελιγμένη εξέλιξη της τελευταίας τεχνολογίας στη διαμόρφωση ηλεκτρονίων». Η ομάδα επέδειξε ακριβή έλεγχο των σπειροειδών ηλεκτρονίων της, ο οποίος θα είναι ζωτικής σημασίας για τη χρήση των σωματιδίων σε εφαρμογές όπως η απεικόνιση ή ο έλεγχος των υπαρχόντων υλικών, λέει.
Ο Μπάουμ και οι συνεργάτες του έχουν ήδη επιβεβαιώσει ότι η πυροδότηση ενός αριστερόχειρα πηνίου ηλεκτρονίων σε μια δεξιόστροφη νανοδομή χρυσού παράγει ένα διαφορετικό μοτίβο εξοστρακισμού από ό,τι όταν πυροδοτείται σε μια αριστερόχειρα δομή. Αυτό ανοίγει την πόρτα για τη χρήση τέτοιων πηνίων ώστε να επηρεάζονται επιλεκτικά τα χειρόμορφα μέρη χημικών ενώσεων ή ηλεκτρονικών συσκευών.
Έχοντας φτιάξει αυτά τα περίεργα ηλεκτρόνια στο εργαστήριο, ο Baum λέει ότι είναι τώρα περίεργος αν θα μπορούσαν να προκύψουν ανεξάρτητα στη φύση. «Αρχίζουμε να εξερευνούμε αυτές τις δυνατότητες», καταλήγει.