Home » 2021 » September

Monthly Archives: September 2021

Λίγα λόγια για την «Ακολουθία Φιμπονάτσι»

Ο Λεονάρντο της Πίζας ή Φιμπονάτσι υπήρξε ένας από τους μεγαλύτερους μαθηματικούς του Μεσαίωνα, δίπλα στον Κοπέρνικο, τον Κέπλερ και τον Γαλιλαίο. Η διάσημη ακολουθία Φιμπονάτσι εμφανίζεται στα Μαθηματικά των Ινδών και συγκεκριμένα σε Σανσκριτικές Προσωδίες. Στην Σανσκριτική προφορική παράδοση, δίνονταν μεγάλη έμφαση κατά πόσο οι μακρόσυρτες συλλαβές (Μ) συνέπιπταν με τις σύντομες (Σ), και μετρούσαν τα διαφορετικά πρότυπα των Μ και των Σ μέσα σε ένα προκαθορισμένο διάστημα, κάτι που οδήγησε στους αριθμούς Φιμπονάτσι. Ο αριθμός των προτύπων που γίνονται m σύντομες συλλαβές μακρόσυρτες είναι ο αριθμός Φιμπονάτσι Fm+1.

 Στη Δύση, οι αριθμοί Φιμπονάτσι εμφανίζονται για πρώτη φορά στο βιβλίο Liber Abaci (1202) του Λεονάρντο της Πίζας, ενώ ο όρος «Ακολουθία Φιμπονάτσι»  χρησιμοποιήθηκε για πρώτη φορά τον 19ο αιώνα από τον Γάλλο μαθηματικό Εδουάρδο Λούκας.

 Ο Φιμπονάτσι παίρνει ως δεδομένο έναν ιδανικό πληθυσμό κουνελιών και κάνει τις εξής υποθέσεις: Έχουμε ένα νεογέννητο ζευγάρι κουνελιών (αρσενικό και θηλυκό) σε ένα χωράφι, τα κουνέλια είναι σε θέση να ζευγαρώσουν σε ηλικία ενός μήνα από τη γέννησή τους, έτσι ώστε στο τέλος του δεύτερου μήνα το θηλυκό να μπορεί να γεννήσει ένα ζευγάρι κουνελιών, τα κουνέλια δεν πεθαίνουν ποτέ και κάθε ζευγάρι κουνελιών γεννάει ένα νέο ζευγάρι (ένα αρσενικό και ένα θηλυκό) κάθε μήνα από τον δεύτερο μήνα και μετά. Το ερώτημα που έθεσε ο Φιμπονάτσι ήταν: Πόσα ζεύγη κουνελιών θα έχουν γεννηθεί μέσα σε ένα έτος;

Στο τέλος του πρώτου μήνα, ζευγαρώνουν, αλλά ακόμη υπάρχει μόνο ένα ζεύγος.

Στο τέλος του δεύτερου μήνα το θηλυκό γεννάει ένα νέο ζεύγος, οπότε στο χωράφι υπάρχουν δύο ζεύγη κουνελιών.

Στο τέλος του τρίτου μήνα, το πρώτο θηλυκό γεννάει και δεύτερο ζεύγος, οπότε έχουμε τρία ζεύγη κουνελιών.

Στο τέλος του τέταρτου μήνα, το πρώτο θηλυκό γεννάει ακόμη ένα ζεύγος, το θηλυκό που γεννήθηκε δύο μήνες πριν γεννάει το πρώτο της ζεύγος, οπότε έχουμε πέντε ζεύγη κουνελιών στο χωράφι.

Στο τέλος του νιοστού μήνα, το πλήθος των ζευγών των κουνελιών είναι ίσος με το πλήθος των νέων ζεύγων (η-2) προσθέτοντας το πλήθος ζευγών που υπήρχαν στο χωράφι τον προηγούμενο μήνα (η-1). Αυτός είναι ο νιοστός αριθμός Φιμπονάτσι.

Το αποτέλεσμα είναι η ακολουθία 0,1,1,2, 3, 5, 8,13, 21, 34, 55, 89,144, 233, 377, 610, 987,1597, 2584, 4181,6765,10946 … Κάθε νέος όρος είναι το άθροισμα των δύο προηγουμένων όρων, ενώ ο λόγος δύο διαδοχικών αριθμών της ακολουθίας, όσο οι αριθμοί μεγαλώνουν, προσεγγίζει όλο και περισσότερο τον «χρυσό λόγο» που είναι ίσος με τον άρρητο αριθμό φ=1,61803…(φ προς τιμήν του Έλληνα γλύπτη Φειδία). Όπως παρατηρούμε: 2/1 =2,3/2=1.5,5/3=1,666…, 8/5=1.6,13/8=1.625, 21/13=1.615 10946/6765=1,61803… Η ακολουθία έχει αποδειχθεί εξαιρετικά χρήσιμη σε πολυάριθμους τομείς όπως η Βιολογία, οι Φυσικές επιστήμες, η Οικονομία, η Ποίηση, η Μουσική, η Αρχαιολογία, η Αρχιτεκτονική κ.α.

Μοιραστείτε το άρθρο αυτό
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on LinkedIn
Linkedin

Η σπαζοκεφαλιά της λογικής αρίθμησης

Τρεις άνδρες, οι γυναίκες τους και ένας χήρος πήραν μια μέρα το αυτοκίνητο για να πάνε εκδρομή. Έπειτα από δέκα χιλιόμετρα δρόμο, συνάντησαν δύο άντρες και ένα παιδί σε ένα άλλο αυτοκίνητο, το οποίο είχε χαλάσει. «Τι ατυχία», είπε ένας από τους επιβαίνοντες. Λίγες ώρες μετά, έφτασαν στον προορισμό τους και είδαν εκεί έναν άνδρα και το παιδί του. Πόσα άτομα αναφέρονται συνολικά στην ιστορία;

Σωστή απάντηση: 12 άτομα

Μοιραστείτε το άρθρο αυτό
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on LinkedIn
Linkedin