Θεωρία Παιγνίων: Το «δίλημμα του φυλακισμένου»
Το «δίλημμα του φυλακισμένου» είναι ένα διάσημο νοητικό πείραμα της θεωρίας παιγνίων, το οποίο μπορεί να χρησιμοποιηθεί ως πρότυπο σε πολλές καταστάσεις του πραγματικού κόσμου που αφορούν συμπεριφορές συνεργασίας. Συνοπτικά, το δίλημμα αυτό οδηγεί στο συμπέρασμα πως το βέλτιστο για τον άνθρωπο και το βέλτιστο για την κοινωνία πολύ συχνά δεν συμβαδίζουν.
Το συγκεκριμένο δίλημμα επινοήθηκε και αναλύθηκε από τους Merill Flood και Melvin Dresher, την εποχή του Ψυχρού Πολέμου, στην Καλιφόρνια του 1950, όταν δούλευαν για λογαριασμό της Rand Corporation -του ερευνητικού κέντρου που ήθελε μελέτες στη θεωρία των παιγνίων για να τις χρησιμοποιήσει σε ενδεχόμενο πυρηνικό πόλεμο.
Οι δυο μαθηματικοί ανακάλυψαν ένα απλό μαθηματικό μοντέλο, σε μορφή παιγνίου, που εξετάζει τις στρατηγικές επιλογές λογικά σκεπτόμενων «παικτών» οι οποίοι εμπλέκονται σε ανταγωνιστικές καταστάσεις. Σύμφωνα με αυτό το μοντέλο, οι παίκτες μπορούν είτε να συνεργαστούν μεταξύ τους είτε να προδώσουν ο ένας τον άλλον.
Το «δίλημμα του φυλακισμένου» σχετίζεται με τα κριτήρια εκείνα σύμφωνα με τα οποία δύο οντότητες λαμβάνουν αποφάσεις οδηγούμενοι είτε στο να κερδίσουν σημαντικά οφέλη από τη συνεργασία τους είτε στο να υποστούν την αποτυχία εάν δεν συνεργαστούν. Σύμφωνα ωστόσο μ’ αυτό το μοντέλο και οι δύο πλευρές θεωρούν αδύνατο -ή δαπανηρό- να συντονίσουν τις δραστηριότητες τους για την επίτευξη αυτής της συνεργασίας, καταλήγοντας έτσι να προδίδουν ο ένας τον άλλον αναλογιζόμενοι το ατομικό τους συμφέρον.
Να σημειωθεί πως το συγκεκριμένο νοητικό πείραμα μπορεί να εφαρμοστεί σε διάφορους τομείς της ζωής: από τις επιχειρήσεις, την οικονομία, τα δημοσιονομικά και τις πολιτικές επιστήμες μέχρι τη φιλοσοφία, την ψυχολογία, τη βιολογία και την κοινωνιολογία.
Το σενάριο του «διλήμματος του φυλακισμένου» έχει ως εξής:
Δυο ύποπτοι (Α και Β) έχουν συλληφθεί ως μέλη μιας συμμορίας για ένα έγκλημα και κρατούνται σε χωριστά δωμάτια σε ένα αστυνομικό τμήμα, χωρίς να έχουν δυνατότητα επικοινωνίας μεταξύ τους. Οι Αρχές έχουν έλλειψη επαρκών αποδείξεων για να τους καταδικάσουν με τη βασική κατηγορία. Ταυτόχρονα, ο ανακριτής προσφέρει στους φυλακισμένους μια συμφωνία, έχοντας πει στον καθένα τα ακόλουθα:
- Εάν ομολογήσεις και συμφωνήσεις να καταθέσεις εναντίον του άλλου υπόπτου, ότι διέπραξε έγκλημα, οι κατηγορίες εναντίον σου θα αποσυρθούν και θα αφεθείς ελεύθερος ατιμώρητος.
- Εάν δεν ομολογήσεις και το κάνει ο άλλος ύποπτος, θα καταδικαστείς με τη μέγιστη ποινή των 3 ετών.
- Εάν ομολογήσετε και οι δυο, θα καταδικαστείτε με 2 χρόνια κάθειρξη έκαστος.
- Εάν κανείς από τους δυο δεν ομολογήσει και οι δυο θα κατηγορηθείτε για πταίσμα και θα καταδικαστείτε με 1 χρόνο φυλακή.
Η ουσία του διλήμματος είναι τι θα κάνουν οι ύποπτοι και η θεωρία παιγνίων διερωτάται ποια είναι η αναμενόμενη ορθολογικά «βέλτιστη» στάση του καθενός από τους φυλακισμένους.
Ο Β είτε θα συνεργαστεί (μένει σιωπηλός), είτε θα αποστατήσει (ομολογεί). Εάν ο Β μείνει σιωπηλός, ο Α σκέφτεται πως πρέπει να ομολογήσει, γιατί το να αφεθεί ελεύθερος, είναι καλύτερα από το να πάει 1 χρόνο φυλακή. Αν ο Β ομολογήσει, ο Α σκέφτεται πως πρέπει επίσης να ομολογήσει, γιατί το να πάει φυλακή 2 χρόνια είναι καλύτερο από το να πάει 3. Έτσι, σε κάθε περίπτωση, ο Α σκέφτεται πως τον συμφέρει να ομολογήσει. Αντίστοιχα σκέφτεται και ο Β.
Ομολογουμένως, η καλύτερη στρατηγική είναι να ομολογήσεις, αδιαφορώντας για το τι θα κάνει ο άλλος ύποπτος, μας λέει η θεωρία των παιγνίων.
Ωστόσο, παρ’ όλο που και οι δυο «λογικά» σκεπτόμενοι το συμφέρον τους αποφασίζουν να ομολογήσουν εναντίον του συνενόχου τους, ο καθένας βρίσκεται σε χειρότερη θέση, από το να έμεναν και οι δυο σιωπηλοί. Και οι δυο ήλπιζαν πως ο άλλος δεν θα μιλούσε και θα αφήνονταν ελεύθεροι. Ωστόσο ο εγωισμός τους δεν έφερε το καλύτερο αποτέλεσμα και για τους δυο, δηλαδή να μην προδώσει ο ένας τον άλλον και να κάνουν μόνο 1 χρόνο φυλακή.
Τα αποτελέσματα είναι χειρότερα από ότι αν ο καθένας διάλεγε να ελαχιστοποιήσει το διάστημα της ποινής του συνεργού του, με το κόστος να ξοδέψει ο ίδιος περισσότερο χρόνο στη φυλακή.
Αν και η θεωρία παιγνίων υποστηρίζει πως οι απόλυτα «λογικοί» θα προδώσουν τον άλλον, στην ουσία διαπιστώνουμε πως ο εγωισμός και η ιδιοτέλεια… κοστίζουν.
Αλλά γιατί δυο απόλυτα λογικοί άνθρωποι δεν πέτυχαν το βέλτιστο και για τους δυο αποτέλεσμα και δεν κατάφεραν να κρατήσουν τη σιωπή τους και να πάνε φυλακή με ποινή μόνο ενός έτους;
Αν συγκρίνουμε τις επιλογές που έχει ο καθένας, θα διαπιστώσουμε πως για κάθε επιλογή του να μιλήσει ή να μη μιλήσει, η επιλογή με το καλύτερο αποτέλεσμα είναι να καρφώσει τον συνένοχο. Με δεδομένη κάθε επιλογή του αντιπάλου, το αποτέλεσμα του ανταγωνισμού επικρατεί έναντι του αποτελέσματος της συνεργασίας.
Το παράδειγμα δείχνει πως το «κοινό συμφέρον» δεν είναι πάντα η επιλογή απόλυτα λογικά σκεπτόμενων ανθρώπων και πως συχνά απόλυτα «λογικές» επιλογές μπορεί να οδηγήσουν σε ζημία όλους τους εμπλεκόμενους.
YouTube Link: https://youtu.be/17o8CIeXV2Y
Μπλεζ Πασκάλ: Ένας χαρισματικός μαθηματικός και φιλόσοφος
Ο Μπλεζ Πασκάλ γεννήθηκε στις 19 Ιουνίου 1623 στο Κλερμόν-Φεράν και απεβίωσε στο Παρίσι στις 19 Αυγούστου 1662. Από μικρός ήταν παιδί-θαύμα, ενώ μεγαλώνοντας αναδείχθηκε ως σπουδαίος μαθηματικός, φυσικός, συγγραφέας, αλλά και φιλόσοφος. Αξίζει να αναφέρουμε πως αν και ο Πασκάλ ήταν ιδιαίτερα έξυπνος, δεν απέκτησε ποτέ ακαδημαϊκή καριέρα σε κάποιο πανεπιστήμιο.
Από μικρή ηλικία όμως καταπιανόταν με διάφορες εφευρέσεις-ανακαλύψεις. Ήταν μόλις 16 ετών, όταν ανέπτυξε σε μια πραγματεία περί κωνικών τομών το θεώρημα που φέρει το όνομά του. Στη συνέχεια, από το 1641 και για περίπου 3 χρόνια, εργάστηκε σκληρά για την κατασκευή μιας αριθμομηχανής, η οποία μπορούσε να κάνει πρόσθεση και αφαίρεση, γνωστή ως «Πασκαλίνα». Ωστόσο, παρά την έντονη ενασχόληση του μ’ αυτό ο Μπλεζ Πασκάλ δεν πέτυχε ως επιχειρηματίας αριθμομηχανών, εφόσον η μηχανή του δεν έκανε μεγάλες πωλήσεις και, τελικά, σταμάτησε να παράγεται.
Λίγο αργότερα, το 1647 ανακάλυψε την «Αρχή του Πασκάλ» και τη χρήση του βαρομέτρου για τη μέτρηση του υψομέτρου. Μάλιστα, με την εργασία του «Traité du triangle arithmétique» (1654), ο ίδιος έθεσε τις βάσεις για την Συνδυαστική και το Λογισμό των Πιθανοτήτων.
Επιπλέον, αξίζει να γνωρίζουμε πως μια από τις πιο γνωστές μαθηματικές μελέτες του Γάλλου αυτού μαθηματικού είναι αυτό που ονομάζουμε «τρίγωνο του Πασκάλ», ή πιο απλά «αριθμητικό τρίγωνο».
Στα τελευταία χρόνια της ζωής του, αποτραβήχτηκε κάπως από τα μαθηματικά και εστίασε περισσότερο την προσοχή του στη συγγραφή θρησκευτικών συγγραμμάτων. Επιπλέον, το 1654 είχε την εμπειρία ενός μυστικιστικού οράματος, οπότε αποσύρθηκε στο μοναστήρι Port Royal και αφοσιώθηκε, παράλληλα με τις μαθηματικές εργασίες του, σε θεολογικές και φιλοσοφικές μελέτες. Ο μεγάλος αυτός φιλόσοφος κατέληξε, έπειτα από επιδείνωση των προβλημάτων υγείας που αντιμετώπιζε για κάμποσα χρόνια, στο Παρίσι το 1662, σε ηλικία μόλις 39 ετών, ενώ προς τιμήν του δόθηκε το όνομά του στη μονάδα μέτρησης της πίεσης στο SI (1 Pa).