Home » 2024 » June

Monthly Archives: June 2024

Η Βέρα Ρούμπιν και η σκοτεινή ύλη

Σε νεαρή ηλικία, η Βέρα Ρούμπιν (Vera Rubin) γοητευόταν από τα αστέρια, παρακολουθώντας τον νυχτερινό ουρανό να περιστρέφεται από το υπνοδωμάτιό της στην Ουάσινγκτον.

Αν και ο πατέρας της είχε αμφιβολίες για τις ευκαιρίες καριέρας στην αστρονομία, υποστήριξε το ενδιαφέρον της βοηθώντας την να κατασκευάσει το δικό της τηλεσκόπιο και πηγαίνοντας μαζί της σε συναντήσεις ερασιτεχνών αστρονόμων. Η Βέρα Ρούμπιν πήρε υποτροφία για το διάσημο γυναικείο κολέγιο Βασσάρ, από όπου αποφοίτησε ως η μοναδική ειδικευόμενη στην αστρονομία το 1948. Κάνοντας αίτηση σε μεταπτυχιακές σχολές, η ίδια πληροφορήθηκε ότι «το Πρίνστον δεν δέχεται γυναίκες» στο πρόγραμμα αστρονομίας. Απτόητη, η Ρούμπιν έκανε αίτηση στο Κορνέλ, όπου σπούδασε φυσική με καθηγητές τους Φίλιπ Μόρισον, Ρίτσαρντ Φάινμαν και Χανς Μπέτε. Στη συνέχεια πήγε στο Πανεπιστήμιο Τζορτζτάουν, όπου πήρε το διδακτορικό της το 1954.

Αφού δίδαξε για λίγα χρόνια στο Τζορτζτάουν, πήρε μια θέση έρευνας στο Ινστιτούτο Κάρνεγκι στην Ουάσιγκτον, το οποίο είχε ένα μέτριο πρόγραμμα αστρονομίας. Η εργασία της επικεντρώθηκε σε παρατηρήσεις της δυναμικής των γαλαξιών. Συνεργάστηκε με τον Κεντ Φορντ, έναν αστρονόμο που είχε αναπτύξει ένα εξαιρετικά ευαίσθητο φασματόμετρο.

Η Ρούμπιν και ο Φορντ χρησιμοποίησαν το φασματόμετρο για να απλώσουν το φάσμα του φωτός που προερχόταν από τα αστέρια σε διάφορα μέρη των σπειροειδών γαλαξιών. Τα αστέρια στο δίσκο ενός γαλαξία κινούνται σε περίπου κυκλικές τροχιές γύρω από το κέντρο. Εάν ο δίσκος έχει κλίση προς τη γραμμή όρασής μας, τα αστέρια στη μία πλευρά μας πλησιάζουν ενώ εκείνα στην άλλη πλευρά απομακρύνονται. Όταν μια πηγή φωτός κινείται προς το μέρος μας, βλέπουμε μείωση των μηκών κύματος του φωτός (μετατόπιση προς το μπλε άκρο του φάσματος), ενώ όταν η πηγή απομακρύνεται, βλέπουμε αύξηση των μηκών κύματος (μετατόπιση προς το κόκκινο άκρο). Αυτό ονομάζεται φαινόμενο Ντόπλερ και η μετατόπιση του μήκους κύματος είναι ανάλογη της ταχύτητας της πηγής φωτός σε σχέση με τον παρατηρητή. Οι Ρούμπιν και Φορντ έκαναν προσεκτικές μετρήσεις των μετατοπίσεων Ντόπλερ στους δίσκους διαφόρων γαλαξιών. Λίγο αργότερα μπόρεσαν να υπολογίσουν τις ταχύτητες τροχιάς των άστρων σε διάφορα μέρη αυτών των γαλαξιών.

Επειδή η περιοχή του πυρήνα ενός σπειροειδούς γαλαξία έχει την υψηλότερη συγκέντρωση ορατών αστέρων, οι αστρονόμοι υπέθεσαν ότι το μεγαλύτερο μέρος της μάζας και συνεπώς της βαρύτητας ενός γαλαξία θα ήταν επίσης συγκεντρωμένο προς το κέντρο του. Στην περίπτωση αυτή, όσο πιο μακριά βρίσκεται ένα αστέρι από το κέντρο, τόσο πιο αργή αναμένεται να είναι η ταχύτητα της τροχιάς του. Παρομοίως, στο ηλιακό μας σύστημα, οι εξωτερικοί πλανήτες κινούνται πιο αργά γύρω από τον Ήλιο από ό,τι οι εσωτερικοί. Παρατηρώντας τον τρόπο με τον οποίο η τροχιακή ταχύτητα των άστρων εξαρτάται από την απόστασή τους από το κέντρο ενός γαλαξία, οι αστρονόμοι, κατ’ αρχήν, θα μπορούσαν να υπολογίσουν πώς κατανέμεται η μάζα σε ολόκληρο τον γαλαξία.

Όταν η Ρούμπιν και ο Φορντ άρχισαν να κάνουν παρατηρήσεις Ντόπλερ των τροχιακών ταχυτήτων στους σπειροειδείς γαλαξίες, ανακάλυψαν αμέσως κάτι εντελώς απροσδόκητο. Τα αστέρια μακριά από τα κέντρα των γαλαξιών, στις αραιοκατοικημένες εξωτερικές περιοχές, κινούνταν εξίσου γρήγορα με εκείνα που βρίσκονταν πιο κοντά. Αυτό ήταν περίεργο, επειδή η ορατή μάζα ενός γαλαξία δεν έχει αρκετή βαρύτητα για να συγκρατήσει σε τροχιά τόσο γρήγορα κινούμενα αστέρια. Αυτό συνεπαγόταν ότι έπρεπε να υπάρχει μια τεράστια ποσότητα αόρατης ύλης στις εξωτερικές περιοχές των γαλαξιών, όπου τα ορατά αστέρια είναι σχετικά λίγα. Η Ρούμπιν και ο Φορντ συνέχισαν να μελετούν περίπου εξήντα σπειροειδείς γαλαξίες και διαπίστωσαν πάντα το ίδιο πράγμα. «Αυτό που βλέπετε σε έναν σπειροειδή γαλαξία», είπε η Ρούμπιν, «δεν είναι αυτό που παίρνετε».

Οι υπολογισμοί της έδειξαν ότι οι γαλαξίες πρέπει να περιέχουν περίπου δέκα φορές περισσότερη «σκοτεινή» μάζα από όση μπορεί να εξηγηθεί από τα ορατά αστέρια. Εν ολίγοις, τουλάχιστον το 90% της μάζας στους γαλαξίες, και επομένως στο παρατηρήσιμο σύμπαν, είναι αόρατη και μη αναγνωρίσιμη. Τότε η Βέρα Ρούμπιν θυμήθηκε κάτι που έμαθε ως μεταπτυχιακή φοιτήτρια σχετικά με παλαιότερες ενδείξεις για αόρατη μάζα στο σύμπαν. Το 1933, ο Φριτς Ζβίκι είχε αναλύσει τις ταχύτητες Ντόπλερ ολόκληρων γαλαξιών μέσα στο σμήνος Κόμα. Διαπίστωσε ότι οι μεμονωμένοι γαλαξίες μέσα στο σμήνος κινούνται τόσο γρήγορα που θα ξέφευγαν αν το σμήνος συγκρατούνταν μόνο από τη βαρύτητα της ορατής μάζας του. Εφόσον το σμήνος δεν δείχνει σημάδια διάσπασης, πρέπει να περιέχει μια υπεροχή «σκοτεινής ύλης» -περίπου δέκα φορές περισσότερη από την ορατή ύλη- για να το συγκρατήσει. Το συμπέρασμα του Ζβίκι ήταν σωστό, αλλά οι συνάδελφοί του ήταν επιφυλακτικοί. Η Βέρα Ρούμπιν συνειδητοποίησε ότι είχε ανακαλύψει πειστικές αποδείξεις για τη σκοτεινή ύλη του Ζβίκι.

Πολλοί αστρονόμοι ήταν αρχικά απρόθυμοι να δεχτούν αυτό το συμπέρασμα. Ωστόσο οι παρατηρήσεις ήταν τόσο ξεκάθαρες και η ερμηνεία τόσο απλή, ώστε σύντομα συνειδητοποίησαν ότι η Ρούμπιν έπρεπε να έχει δίκιο. Τα φωτεινά αστέρια είναι μόνο οι ορατοί ιχνηλάτες μιας πολύ μεγαλύτερης μάζας που αποτελεί έναν γαλαξία. Τα αστέρια καταλαμβάνουν μόνο τις εσωτερικές περιοχές μιας τεράστιας σφαιρικής «άλω» αόρατης σκοτεινής ύλης που περιλαμβάνει το μεγαλύτερο μέρος της μάζας ενός γαλαξία. Ίσως να υπάρχουν ακόμη και μεγάλες συσσωρεύσεις σκοτεινής ύλης στους αχανείς χώρους μεταξύ των γαλαξιών, χωρίς να υπάρχουν ορατά αστέρια που να ανιχνεύουν την παρουσία τους. Αλλά αν είναι έτσι, θα ήταν πολύ δύσκολο να παρατηρηθούν.

Και τι ακριβώς είναι αυτή η «σκοτεινή ύλη», που μέχρι στιγμής δεν έχει παρατηρηθεί παρά μόνο από την επίδραση της βαρύτητάς της στα άστρα; Το ερώτημα είναι ένα από τα μεγαλύτερα άλυτα μυστήρια της αστρονομίας σήμερα. Πολλοί θεωρητικοί και παρατηρητικοί αστρονόμοι εργάζονται σκληρά προσπαθώντας να απαντήσουν.

Η Βέρα Ρούμπιν συνέχισε να εξερευνά τους γαλαξίες. Το 1992 ανακάλυψε έναν γαλαξία (NGC 4550) στον οποίο τα μισά αστέρια του δίσκου περιφέρονται προς τη μία κατεύθυνση και τα μισά προς την αντίθετη, με τα δύο συστήματα να αναμειγνύονται, Ίσως αυτό να προέκυψε από τη συγχώνευση δύο γαλαξιών που περιστρέφονται προς αντίθετες κατευθύνσεις. Από τότε η Ρούμπιν ανακάλυψε αρκετές άλλες περιπτώσεις παρόμοιας παράξενης συμπεριφοράς. Αργότερα, η ίδια και οι συνάδελφοί της διαπίστωσαν ότι οι μισοί γαλαξίες στο μεγάλο σμήνος της Παρθένου παρουσιάζουν σημάδια διαταραχών που οφείλονται σε στενές βαρυτικές συναντήσεις με άλλους γαλαξίες.

Σε αναγνώριση των επιτευγμάτων της, η Βέρα Ρούμπιν εξελέγη μέλος της Εθνικής Ακαδημίας Επιστημών και το 1993 της απονεμήθηκε το Εθνικό Μετάλλιο της Επιστήμης. Όμως καθ’ όλη τη διάρκεια της καριέρας της, η Ρούμπιν δεν επιδίωξε το κύρος ή την αναγνώριση. Αντίθετα, στόχος της ήταν η προσωπική ικανοποίηση από την επιστημονική ανακάλυψη. «Κοιτάξαμε σε έναν νέο κόσμο», έγραψε, «και είδαμε ότι είναι πιο μυστηριώδης και πιο πολύπλοκος από ό,τι είχαμε φανταστεί. Ακόμα περισσότερα μυστήρια του σύμπαντος παραμένουν κρυμμένα. Η ανακάλυψή τους περιμένει τους τολμηρούς επιστήμονες του μέλλοντος».

Μοιραστείτε το άρθρο αυτό
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on LinkedIn
Linkedin

Κβαντικά μπλεγμένα φωτόνια αντιδρούν στην περιστροφή της Γης

 

Μια ομάδα ερευνητών με επικεφαλής τον Philip Walther στο Πανεπιστήμιο της Βιέννης πραγματοποίησε ένα πρωτοποριακό πείραμα όπου μέτρησε την επίδραση της περιστροφής της Γης στα κβαντικά διεμπλεκόμενα φωτόνια. Η εργασία αυτή αποτελεί ένα σημαντικό επίτευγμα που διευρύνει τα όρια της ευαισθησίας στην περιστροφή σε αισθητήρες που βασίζονται στην περιπλοκή, θέτοντας ενδεχομένως τις βάσεις για περαιτέρω εξερεύνηση στο σημείο τομής μεταξύ της κβαντικής μηχανικής και της γενικής σχετικότητας.

Τα οπτικά συμβολόμετρα Sagnac είναι οι πιο ευαίσθητες συσκευές στις περιστροφές. Από τα πρώτα χρόνια του περασμένου αιώνα έχουν διαδραματίσει καθοριστικό ρόλο στην κατανόηση της θεμελιώδους φυσικής, συμβάλλοντας στην εδραίωση της ειδικής θεωρίας της σχετικότητας του Αϊνστάιν. Σήμερα, η απαράμιλλη ακρίβειά τους τα καθιστά το απόλυτο εργαλείο για τη μέτρηση των ταχυτήτων περιστροφής, που περιορίζεται μόνο από τα όρια της κλασικής φυσικής.

Τα συμβολόμετρα που χρησιμοποιούν κβαντική διεμπλοκή έχουν τη δυνατότητα να σπάσουν αυτά τα όρια. Εάν δύο ή περισσότερα σωματίδια είναι περιπλεγμένα, μόνο η συνολική κατάσταση είναι γνωστή, ενώ η κατάσταση του μεμονωμένου σωματιδίου παραμένει απροσδιόριστη μέχρι τη μέτρηση. Αυτό μπορεί να χρησιμοποιηθεί για την απόκτηση περισσότερων πληροφοριών ανά μέτρηση από ό,τι θα ήταν δυνατό χωρίς αυτό. Ωστόσο, το υποσχόμενο κβαντικό άλμα στην ευαισθησία εμποδίζεται από την εξαιρετικά ευαίσθητη φύση της διεμπλοκής. Εδώ είναι που το πείραμα της Βιέννης έκανε τη διαφορά.

Οι ερευνητές κατασκεύασαν ένα γιγαντιαίο συμβολόμετρο Sagnac από οπτικές ίνες και διατήρησαν τον θόρυβο σε χαμηλά και σταθερά επίπεδα για αρκετές ώρες. Αυτό επέτρεψε την ανίχνευση αρκετών υψηλής ποιότητας περιπλεγμένων ζευγών φωτονίων, ώστε να ξεπεράσουν την ακρίβεια περιστροφής των προηγούμενων κβαντικών οπτικών συμβολομέτρων Sagnac κατά χίλιες φορές.

Σε ένα συμβολόμετρο Sagnac, δύο σωματίδια που ταξιδεύουν σε αντίθετες κατευθύνσεις μιας περιστρεφόμενης κλειστής διαδρομής φθάνουν στο σημείο εκκίνησης σε διαφορετικές χρονικές στιγμές. Με δύο διεμπλεκόμενα σωματίδια, η κατάσταση γίνεται τρομακτική: συμπεριφέρονται σαν ένα μόνο σωματίδιο που δοκιμάζει και τις δύο κατευθύνσεις ταυτόχρονα, ενώ συσσωρεύουν διπλάσια χρονική καθυστέρηση σε σύγκριση με το σενάριο όπου δεν υπάρχει διεμπλοκή.

Αυτή η μοναδική ιδιότητα είναι γνωστή ως υπερ-ανάλυση. Στο πραγματικό πείραμα, δύο περιπλεγμένα φωτόνια διαδίδονταν μέσα σε μια οπτική ίνα μήκους 2 χιλιομέτρων, η οποία ήταν τυλιγμένη σε ένα τεράστιο πηνίο, υλοποιώντας ένα συμβολόμετρο με πραγματική επιφάνεια μεγαλύτερη από 700 τετραγωνικά μέτρα.

Ένα σημαντικό εμπόδιο που αντιμετώπισαν οι ερευνητές ήταν η απομόνωση και η εξαγωγή του σταθερού σήματος περιστροφής της Γης. «Ο πυρήνας του θέματος έγκειται στον καθορισμό ενός σημείου αναφοράς για τη μέτρησή μας, όπου το φως παραμένει ανεπηρέαστο από το φαινόμενο της περιστροφής της Γης. Δεδομένης της αδυναμίας μας να σταματήσουμε τη Γη από την περιστροφή της, επινοήσαμε μια λύση: χωρίσαμε την οπτική ίνα σε δύο πηνία ίσου μήκους και τα συνδέσαμε μέσω ενός οπτικού διακόπτη», εξηγεί ο επικεφαλής συγγραφέας Raffaele Silvestri.

Ανοίγοντας και κλείνοντας τον διακόπτη, οι ερευνητές μπορούσαν να ακυρώσουν το σήμα περιστροφής κατά βούληση, γεγονός που τους επέτρεψε επίσης να επεκτείνουν τη σταθερότητα της μεγάλης συσκευής τους. «Ουσιαστικά ξεγελάσαμε το φως ώστε να νομίζει ότι βρίσκεται σε ένα μη περιστρεφόμενο σύμπαν», λέει ο Silvestri.

Το πείραμα, το οποίο διεξήχθη στο πλαίσιο του ερευνητικού δικτύου TURIS που φιλοξενείται από το Πανεπιστήμιο της Βιέννης και την Αυστριακή Ακαδημία Επιστημών, παρατήρησε με επιτυχία την επίδραση της περιστροφής της Γης σε μια κατάσταση δύο φωτονίων με μέγιστη διεμπλοκή. Αυτό επιβεβαιώνει την αλληλεπίδραση μεταξύ των περιστρεφόμενων συστημάτων αναφοράς και της κβαντικής διεμπλοκής, όπως περιγράφεται στην ειδική θεωρία της σχετικότητας του Αϊνστάιν και στην κβαντομηχανική, με χιλιαπλάσια βελτίωση της ακρίβειας σε σύγκριση με προηγούμενα πειράματα.

 

Μοιραστείτε το άρθρο αυτό
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on LinkedIn
Linkedin

Φράνσις Κρικ: Ξετυλίγοντας τα μυστήρια της ζωής

  Ο Φράνσις Κρικ (Francis Crick), το έργο του οποίου άλλαξε ριζικά την κατανόηση της βιολογίας, παραμένει σύμβολο της επιστημονικής ανακάλυψης. Γεννημένος στις 8 Ιουνίου 1916 στο Νορθάμπτον της Αγγλίας, η πορεία του Κρικ από ένα νεαρό αγόρι με πάθος για την επιστήμη σε μια από τις βασικές μορφές της διαλεύκανσης της δομής του DNA αποτελεί απόδειξη, τόσο της ευφυΐας του, όσο και της αμείλικτης περιέργειάς του.

 Η πρώιμη ζωή του Κρικ σημαδεύτηκε από ακαδημαϊκή αριστεία και έντονο ενδιαφέρον για την επιστήμη. Φοίτησε στο Northampton Grammar School, όπου ήταν ήδη εμφανείς οι εξαιρετικές ικανότητές του στα μαθηματικά και τη φυσική. Ωστόσο, ήταν κατά τη διάρκεια της φοίτησής του στο University College του Λονδίνου που ο Κρικ άρχισε πραγματικά να λάμπει. Αποφοιτώντας με πτυχίο φυσικής το 1937, έκανε διδακτορικό στη φυσική, εστιάζοντας στη μέτρηση του ιξώδους του νερού σε υψηλές θερμοκρασίες και πιέσεις.

  Ο Β’ Παγκόσμιος Πόλεμος διέκοψε τις ακαδημαϊκές αναζητήσεις του Φράνσις Κρικ, οδηγώντας τον να εργαστεί για το βρετανικό Ναυαρχείο ερευνώντας την ανίχνευση μαγνητικών και ακουστικών ναρκών. Παρά την απόκλιση από τα επιστημονικά του ενδιαφέροντα, η εμπειρία αυτή βελτίωσε τις ικανότητές του στην επίλυση προβλημάτων και στην ανάλυση δεδομένων, ιδιότητες που θα του χρησίμευαν στις μελλοντικές του προσπάθειες.

  Μετά τον πόλεμο, ο Κρικ επέστρεψε στην επιστημονική έρευνα, μεταβαίνοντας στον τομέα της βιολογίας. Το διεπιστημονικό του υπόβαθρο τον τοποθετούσε μοναδικά για να αντιμετωπίσει τις πολύπλοκες προκλήσεις της μοριακής βιολογίας, που τότε βρισκόταν στα σπάργανα. Το 1947, ο Κρικ εντάχθηκε στη Μονάδα του Συμβουλίου Ιατρικών Ερευνών στο Εργαστήριο Cavendish στο Κέιμπριτζ της Αγγλίας, όπου συνεργάστηκε με ερευνητές όπως ο Μορίς Γουίλκινς και η Ρόζαλιντ Φράνκλιν.

  Ωστόσο, ήταν η συνεργασία του Κρικ με τον Τζέιμς Γουάτσον που θα άλλαζε την πορεία της επιστημονικής ιστορίας. Το 1951, ο Κρικ και ο Γουάτσον άρχισαν να εργάζονται από κοινού για την αποκάλυψη της δομής του DNA, του μορίου που είναι υπεύθυνο για τη μεταφορά των γενετικών πληροφοριών. Η πρωτοποριακή ανακάλυψή τους, που δημοσιεύθηκε το 1953, αποκάλυψε τη δομή της διπλής έλικας του DNA, μια αποκάλυψη που έθεσε τα θεμέλια για τη σύγχρονη γενετική και τη μοριακή βιολογία.

  Η συμβολή του Κρικ επεκτάθηκε πολύ πέρα από την ανακάλυψη της δομής του DNA. Συνέχισε με τη διαλεύκανση του γενετικού κώδικα, αποκρυπτογραφώντας τον τρόπο με τον οποίο η αλληλουχία των νουκλεοτιδίων στο DNA κωδικοποιεί τις οδηγίες για τη δημιουργία πρωτεϊνών. Οι γνώσεις του για το κεντρικό δόγμα της μοριακής βιολογίας – τη ροή της γενετικής πληροφορίας από το DNA στο RNA στην πρωτεΐνη – έφεραν επανάσταση στην κατανόηση της λειτουργίας της ζωής σε μοριακό επίπεδο.

  Εκτός από τα επιστημονικά του επιτεύγματα, ο Φράνσις Κρικ ήταν γνωστός για την τολμηρή και αντισυμβατική του σκέψη. Πρότεινε ως γνωστόν την υπόθεση του «κόσμου του RNA», υπονοώντας ότι το RNA, αντί του DNA, μπορεί να ήταν το πρώτο μόριο της ζωής. Η ιδέα αυτή αμφισβήτησε τις επικρατούσες αντιλήψεις σχετικά με την προέλευση της ζωής στη Γη και έδωσε ώθηση για περαιτέρω έρευνα σχετικά με το ρόλο του RNA στις πρώιμες βιολογικές διαδικασίες.

  Καθ’ όλη τη διάρκεια της σταδιοδρομίας του, ο Κρικ παρέμεινε προσηλωμένος στην αναζήτηση της γνώσης και στην πρόοδο της επιστήμης. Η ευφυΐα, η δημιουργικότητα και το πνεύμα συνεργασίας του συνεχίζουν να εμπνέουν επιστήμονες σε όλο τον κόσμο. Ο Φράνσις Κρικ απεβίωσε στις 28 Ιουλίου 2004, αφήνοντας πίσω του μια κληρονομιά που θα διαρκέσει για τις επόμενες γενιές.

Μοιραστείτε το άρθρο αυτό
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on LinkedIn
Linkedin

Κβαντικές δυνάμεις χρησιμοποιούνται για την αυτόματη συναρμολόγηση μικροσκοπικής συσκευής για τον έλεγχο του φωτός

  Το 1948, ο φυσικός Hendrik Casimir διατύπωσε τη θεωρία ότι ορισμένα αντικείμενα παρουσιάζουν μια πολύ ασθενή έλξη όταν βρίσκονται κοντά το ένα στο άλλο στο χώρο, λόγω των ανεπαίσθητων τρεμοπαίξεων των κβαντικών πεδίων στο κενό μεταξύ τους. Οι ερευνητές έχουν έκτοτε επιβεβαιώσει αυτό το φαινόμενο, που ονομάστηκε Casimir, στο εργαστήριο. Η Betül Küçüköz στο Τεχνολογικό Πανεπιστήμιο Chalmers της Σουηδίας και οι συνάδελφοί της βρήκαν πρόσφατα έναν τρόπο να το κάνουν χρήσιμο.

  Ήθελαν να κατασκευάσουν μια κοιλότητα παγίδευσης του φωτός χρησιμοποιώντας δύο κομμάτια χρυσού τοποθετημένα παράλληλα το ένα με το άλλο, μεταξύ των οποίων το φως θα αναπηδούσε μπρος-πίσω, χωρίς να μπορεί να διαφύγει. Αρχικά, δημιούργησαν το κάτω άκρο της κοιλότητας αποτυπώνοντας μια τριγωνική νιφάδα χρυσού μεγέθους μεταξύ 4 και 10 μικρομέτρων πάνω σε ένα μικρό κομμάτι γυαλιού. Το άνω άκρο της κοιλότητας περιελάμβανε, επίσης, μια τριγωνική χρυσή νιφάδα, αλλά αντί να τη συγκρατήσουν στη θέση της με κάποιο εργαλείο, οι ερευνητές βύθισαν τη χρυσή νιφάδα που είχε τοποθετηθεί στο γυαλί σε ένα διάλυμα αλμυρού νερού που περιείχε επιπλέον τριγωνικές χρυσές νιφάδες, και στη συνέχεια άφησαν τις δυνάμεις που προέκυψαν φυσικά να κάνουν τη δουλειά τους.

  Μία από αυτές τις δυνάμεις ήταν η ηλεκτροστατική δύναμη που προκαλείται από τα ηλεκτρικά φορτία που σχετίζονται με το διαλυμένο αλάτι. Η άλλη ήταν το φαινόμενο Casimir. Η Küçüköz λέει ότι παρακολούθησε πολλές εκτελέσεις αυτού του πειράματος στο μικροσκόπιο και μπορούσε πάντα να δει το φαινόμενο Casimir σε δράση. Προκάλεσε λοιπόν μια από τις ελεύθερα αιωρούμενες νιφάδες χρυσού να κινηθεί προς εκείνη που αποτυπώθηκε στο γυαλί και στη συνέχεια την έκανε να περιστραφεί πάνω από την αποτυπωμένη νιφάδα μέχρι να ταυτιστούν τα τριγωνικά αποτυπώματα των δύο νιφάδων.

  Έτσι ολοκληρώθηκε η συναρμολόγηση της κοιλότητας, η οποία μπορούσε στη συνέχεια να παγιδεύσει το φως. Οι ερευνητές είχαν μεγάλο έλεγχο της διαδικασίας σχηματισμού της κοιλότητας, λέει η Küçüköz. Για παράδειγμα, χρησιμοποιώντας διαφορετικές συγκεντρώσεις αλατιού, μπορούσαν να προσαρμόσουν την ισχύ της ηλεκτροστατικής δύναμης ώστε να δημιουργήσουν κοιλότητες με ελαφρώς διαφορετικές διαστάσεις, με αποστάσεις μεταξύ των νιφάδων που κυμαίνονταν μεταξύ 100 και 200 νανομέτρων, οι οποίες θα μπορούσαν στη συνέχεια να παγιδεύσουν φως διαφορετικού χρώματος.

  Ο Raúl Esquivel-Sirvent του Εθνικού Αυτόνομου Πανεπιστημίου του Μεξικού λέει ότι η ιδέα της αυτοσυναρμολόγησης, την οποία συγκρίνει με το να ρίχνεις ένα σετ Lego σε ένα δοχείο και να προκύπτει μια δομή χωρίς ποτέ να πιέσεις χειροκίνητα τα κομμάτια μεταξύ τους, δεν είναι καινούργια. Αλλά λέει ότι το πείραμα της ομάδας είναι πιο λεπτομερές και ελεγχόμενο από προηγούμενες προσπάθειες να χρησιμοποιηθεί το φαινόμενο Casimir για παρόμοιους σκοπούς. Ωστόσο, το φαινόμενο Casimir μπορεί να είναι τόσο ανεπαίσθητο, λέει ο Esquivel-Sirvent, που είναι πιθανό να υπάρχουν ακόμα και άλλα, μη ανιχνευμένα φαινόμενα που παίζουν ρόλο εδώ.

  Προχωρώντας μπροστά, η Küçüköz και οι συνάδελφοί της θέλουν να χρησιμοποιήσουν τις κοιλότητές τους ως μέρος πιο σύνθετων πειραμάτων με το φως, συμπεριλαμβανομένων κάποιων που περιλαμβάνουν την τοποθέτηση αντικειμένων μέσα στην κοιλότητα μεταξύ των δύο νιφάδων χρυσού.

Μοιραστείτε το άρθρο αυτό
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on LinkedIn
Linkedin